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Abstract—Early and accurate diagnosis of Alzheimer’s disease (AD) and its prodromal period mild cognitive
impairment (MCI) is essential for the delayed disease progression and the improved quality of patients’ life.
The emerging computer-aided diagnostic methods that combine deep learning with structural magnetic reso-
nance imaging (sMRI) have achieved encouraging results, but some of them are limit of issues such as data leak-
age, overfitting, and unexplainable diagnosis. In this research, we propose a novel end-to-end deep learning
approach for automated diagnosis of AD. This approach has the following differences from the current
approaches: (1) Convolutional Neural Network (CNN) models of different structures and capacities are evaluated
systemically and the most suitable model is adopted for AD diagnosis; (2) A data augmentation strategy named
Two-stage Random RandAugment (TRRA) is proposed to alleviate the overfitting issue caused by limited training
data and to improve the classification performance in AD diagnosis; (3) An explainable method of Grad-CAM++
is introduced to generate the visually explainable heatmaps to make our model more transparent. Our approach
has been evaluated on two publicly accessible datasets for two classification tasks of AD vs. cognitively normal
(CN) and progressive MCI (pMCI) vs. stable MCI (sMCI). The experimental results indicate that our approach out-
performs the state-of-the-art approaches, including those using multi-model and three-dimensional (3D) CNN
methods. The resultant heatmaps from our approach also highlight the lateral ventricle and some regions of cor-
tex, which have been proved to be affected by AD. � 2022 IBRO. Published by Elsevier Ltd. All rights reserved.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common type of

dementia (Tiwari et al., 2019). It is estimated that 131 mil-

lion people worldwide will suffer from AD and other

dementias by 2050, presenting a great healthcare chal-

lenge in the 21st century (Livingston et al., 2017). Mild

cognitive impairment (MCI) represents a slight decline of

mental ability along the continuum from normal cognition

to AD, while over 33% of MCI subjects will progress to

AD within five or more years (Ward et al., 2013;

Livingston et al., 2017). Currently, there is no curative

treatment for AD. However, the progression of the dis-

ease can be slowed down through medications, exercise

and memory training (Anonymous, 2020). In this regard,

early detection of AD and accurate diagnosis of MCI are

critical for delaying the disease progress and improving

the patient’s quality of life (Liu et al., 2020). Structural

magnetic resonance imaging (sMRI) has been increas-

ingly used for clinical diagnosis of AD and MCI because
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it can help differentiate neuropathological alterations

associated with these diseases (Serrano-Pozo et al.,

2011), and it does not involve ionizing radiation and is

cheaper compared with positron emission tomography

(PET) (Spasov et al., 2019).

In recent years, many researchers have developed

computer-aided diagnostic systems by combining

machine learning methods and sMRI data to identify the

progression of AD (Beheshti and Demirel, 2015;

Christian et al., 2015; Liu et al., 2015; Moller et al.,

2016; Rathore et al., 2017; Cao et al., 2020; Kang et al.,

2021; Prakash et al., 2021). Herein, the primary research

tasks include the classification of AD versus cognitively

normal (CN) (Wen et al., 2020) and the prediction of con-

version from MCI toward AD (stable MCI (sMCI) versus

progressive MCI (pMCI)) (Anonymous, 2020). In these

studies, the predefined features are first obtained from

image preprocessing procedures, and then different types

of classifiers are applied for classification tasks (Beheshti

and Demirel, 2015; Liu et al., 2015; Moller et al., 2016).

Since the feature selection and the classification algo-

rithms are executed independently in traditional machine

learning methods (LeCun et al., 2015), this may lead to

the potential loss of information associated with the clas-

sification tasks (Nguyen and de la Torre, 2010).

Deep learning is a state-of-the-art machine learning

technique capable of extracting low-to-high level feature

representations automatically from large and high-

dimensional data sets, superior to the traditional

machine learning methods (Jo et al., 2019). As one of

the most popular deep learning architectures, Convolu-

tional Neural Network (CNN) has recently been explored

for AD diagnosis (Farooq et al., 2017; Vu et al., 2018;

Wang et al., 2019; Lian et al., 2020; Liu et al., 2020). Lian

et al. proposed a hierarchical fully convolutional network

to construct the hierarchical classifier for AD diagnosis

(Lian et al., 2020). Liu et al. proposed a multi-model deep

learning method for hippocampal segmentation and AD

diagnosis (Liu et al., 2020). Despite these encouraging

results, the credibility of some studies in CNN-assisted

AD diagnosis is hindered by data leakage issues (Wen

et al., 2020). Wen et al. analyzed the reasons that cause

data leakage and pointed that a subject simultaneously

appearing in training, validation and test sets may virtually

increase the performance of the CNN models (Wen et al.,

2020). Backstrom et al. also verified that the diagnostic

accuracy of the unbiased splitting (at the subject level)

is 8% lower than that of the biased splitting (at the slice

level) (Backstrom et al., 2018). Two-dimensional (2D)

CNN models, such as DenseNet (Huang et al., 2017)

and EfficientNet (Mingxing and Quoc, 2019), have been

successfully implemented in natural image classification

and are also explored in AD diagnosis (Wen et al.,

2020). 2D models pre-trained on ImageNet (Deng et al.,

2009) are readily applicable to small-scale medical image

datasets by transfer learning to achieve better perfor-

mance (Liu et al., 2021). In addition, many slices can be

extracted from a single 3D image to increase the amount

of training data in 2D models (Wen et al., 2020). However,

it was also reported that the AD classification accuracy for

2D CNN models is 10% lower than that of three-
dimensional (3D) CNN models (Wen et al., 2020). We will

focus on 2D CNN models with the hypothesis that they

will yield the classification performance comparable to a

3D model after algorithm optimization.

This research aims at addressing several unsolved

problems associated with CNN-assisted AD diagnosis.

First of all, there is no systematic comparison of the

classification performance for different CNN models in

AD diagnosis. For example, Wen et al. (Wen et al.,

2020) and Valliani et al. (Valliani and Soni, 2017) both

used ResNet-18 in their studies but discarded other

ResNet models (He et al., 2016). Second, automated

augmentation strategies have not been introduced in

CNN-assisted AD diagnosis despite their demonstrated

effectiveness in alleviating the overfitting issue caused

by limited training data. Finally, many CNN models for

AD diagnosis cannot provide the explanations of their pre-

dictions due to the ‘‘black box” nature of deep learning.

When performing classification tasks on large-scale

image datasets, ameliorating model structure from initial

AlexNet (Krizhevsky et al., 2017) to EfficientNet

(Mingxing and Quoc, 2019) or increasing the capacity of

the similar model structures can always achieve better

performance (He et al., 2016; Mingxing and Quoc,

2019). However, this is not always correct on small-

scale image datasets because the increased capacity

may cause the model to transition from an under-fitting

area to an over-fitting area (Belkin et al., 2019). Consider-

ing that even Alzheimer’s Disease Neuroimaging Initiative

(ADNI), one of the largest public datasets for AD diagno-

sis, has limited amount of data, the first question we focus

on is: which model structure yields the best performance

and what capacity of models in similar structures is most

suitable for AD diagnosis? In this research, we try to iden-

tify the most suitable model by assessing the perfor-

mance of CNNs with different structures and capacities.

At the same time, we need to further alleviate the

overfitting issue caused by the limited amount of data.

Data augmentation is one of the effective methods to

alleviate the overfitting issue and finally improve the

generalization of models. Since the conventional data

augmentation strategies are problem specific, it is

difficult to extend the same strategies to different

applications and fields. Automated augmentation

strategies are expected to overcome this shortcoming

(Cubuk et al., 2019; Lim et al., 2019; Cubuk et al.,

2020) and various automated augmentation strategies,

such as AutoAugment (Cubuk et al., 2019) and RandAug-

ment (Cubuk et al., 2020), have proven their effectiveness

in alleviating overfitting and improving model robustness

for natural image classification. Considering the differ-

ence between natural image datasets and sMRI datasets,

direct use of data augmentation strategies developed for

the former may not be the best choice. In this research,

we propose a Two-stage Random RandAugment (TRRA)

for improved classification performance in AD diagnosis.

Recently, visual explanations of CNN models on

large-scale image dataset for enhanced transparency

has attracted more and more research attention.

Gradient-weighted Class Activation Mapping (Grad-

CAM) introduces the gradients of the predicted target
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with respect to the final convolutional layer to generate a

heatmap highlighting the areas that are important to the

predicted target in the image (Selvaraju et al., 2017).

Fan et al. introduced 3D Grad-CAM to their approach

and found that their model focused on the ventricles, hip-

pocampus, and some regions of cortex when classifying

AD and NC (Fan et al., 2021). As an improved version

of Grad-CAM, Grad-CAM++ generates better visual

explanations of model predictions to improve the model

transparency (Chattopadhay et al., 2018).

In this paper, we propose a novel end-to-end deep

learning approach for automated diagnosis of AD from

the sMRI data. The main contributions of this research

are summarized as follows:

(1) CNN models of different structures and capacities

are evaluated systemically, and the experimental

results indicate that models in advanced structure

with moderate capacity rather than the largest one

can achieve better performance. To the best of

our knowledge, this is the first report of using Effi-

cientNet for AD diagnosis.

(2) A TRRA data augmentation strategy is proposed to

alleviate the overfitting issue caused by limited

training data and to improve the classification per-

formance in AD diagnosis.

(3) An explainable method of Grad-CAM++ is intro-

duced to generate the visually explainable heat-

maps to make our model more transparent.

EXPERIMENTAL PROCEDURES

Participants and data preprocessing

Data used in this research were obtained from

Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (https://adni.loni.usc.edu/) and Australian

Imaging Biomarkers and Lifestyle flagship study of

ageing (AIBL) database (https://aibl.csiro.au/). ADNI

dataset is one of the largest publicly accessible datasets

used for AD diagnosis and has been widely used in

scientific research. AIBL dataset has the similar

inclusion criteria and image acquisition procedures with

ADNI dataset and is commonly used to further evaluate

the generalization ability of the models. The ADNI was

launched in 2003 as a public–private partnership, led by

Principal Investigator Michael W. Weiner, MD. The

primary goal of ADNI has been to test whether serial

MRI, PET, other biological markers, and clinical and

neuropsychological assessment can be combined to

measure the progression of MCI and early AD. For up-

to-date information, see www.adni-info.org. Data in AIBL

database was collected by the AIBL study group. AIBL

study methodology has been reported previously (Ellis

et al., 2009). Informed consent was acquired from all par-

ticipants, and the ethics committee of the leading institu-

tion of each dataset approved their research. Baseline

images in two datasets are used in this study, and images

in ADNI dataset are from four phases (ADNI-1, GO, 2 and

3). The MCI subjects in ADNI dataset are specified as

sMCI subjects that are diagnosed as MCI at all available

time points over 36 months, or pMCI subjects that convert
to AD within 36 months after the baseline time. The 36-

month conversion time is consistent with the time in the

literature (Liu et al., 2017; Lian et al., 2020; Wen et al.,

2020).

Considering that CNN can extract low-to-high level

features automatically, in order to provide fair evaluation

results, we use the ‘‘minimal” preprocessing procedure

suggested by Wen et al. (Wen et al., 2020). First, all the

data are converted into the Brain Imaging Data Structure

(BIDS) format (Gorgolewski et al., 2016). Second, the

N4ITK method is used for the bias field correction

(Tustison et al., 2010). Third, the SyN algorithm (Avants

et al., 2008) from ANTs (Avants et al., 2014) is used for

affine registration that aligns each image to the MNI

space with the ICBM 2009c nonlinear symmetric template

(Fonov et al., 2009; Fonov et al., 2011). Finally, the regis-

tered images are cropped to remove the background,

resulting in the images of size 169 � 208 � 179, with

1 mm isotropic voxels. For each subject, we obtain 129

slices of RGB images by discarding the first twenty and

last twenty slices along the sagittal direction and copying

each of the remaining slices to the R, G, and B channels.

All the preprocessing procedures are performed using the

Clinica (Routier et al., 2018; Samper-Gonzalez et al.,

2018; Wen et al., 2020) and the ANTs (Avants et al.,

2010; Avants et al., 2011) software packages. Some sub-

jects are excluded by the preprocessing procedures for

the following reasons: AD and CN subjects whose label

change over time; MCI subjects who have two or more

label changes (for example, progressing to AD and then

reverting back to MCI); MCI subjects who do not convert

to AD and are followed for less than 36 months; Subjects

who do not pass quality check (Fonov et al., 2018).

Table 1 and Table 2 summarize the demographics, the

mini-mental state examination (MMSE) scores, and the

global clinical dementia rating (CDR) scores of the ADNI

and AIBL participants.

Overview of the proposed deep learning approach

Fig. 1 shows the flowchart of our proposed approach that

includes the sequential stages of training, validation/

testing and visual explanation. The pre-processed

images are firstly resized from 208 � 179 to 297 � 256

in all the stages. During the training stage, the TRRA

data augmentation strategy is applied to each image in

the training set and the resultant image is randomly

cropped to match the size of 224 � 224 required by the

CNN models. For the AD classification task, we use the

model pre-trained on the ImageNet dataset and fine-

tune it on the ADNI training set. For the MCI conversion

prediction task, we also investigate the possibility of

transferring a CNN model pre-trained on AD

classification task to this task. For each classification

task, the model generates two prediction outputs per

image and the cross-entropy loss function expressed as

Equation1 is adopted:

loss x; classð Þ ¼ � logðexp x class½ �ð ÞP
j exp x j½ �ð Þ Þ ð1Þ

where class 2 0; 1f g specifies the ground-truth class and x
is the values predicted by the model. No data

https://adni.loni.usc.edu/
https://aibl.csiro.au/
http://www.adni-info.org/


Table 1. Summary of participant demographics, MMSE and CDR scores at baseline for ADNI

Subjects Age Gender MMSE CDR

AD 333 75.0 ± 7.8 [55.1, 90.9] 150 F/183 M 23.2 ± 2.1 [18, 27] 0.5: 156; 1: 176; 2: 1

CN 338 74.4 ± 5.7 [59.8, 89.6] 174 F/164 M 29.1 ± 1.1 [24, 30] 0: 338

sMCI 296 72.2 ± 7.44 [55.0, 88.6] 119 F/177 M 28.0 ± 1.7 [23, 30] 0.5: 296

pMCI 302 74.3 ± 7.1 [55.2, 91.7] 123 F/179 M 26.8 ± 1.9 [19, 30] 0.5: 300; 1: 2

Values are presented as Means ± S.D. [range]. M: male, F: female.

Table 2. Summary of participant demographics, MMSE and CDR scores at baseline for AIBL

Subjects Age Gender MMSE CDR

AD 77 75.0 ± 7.7 [55.5, 93.4] 43F / 34 M 20.6 ± 5.3 [6, 29] 0.5: 29; 1: 40; 2: 6; 3: 2

CN 450 73.1 ± 6.2 [60.3, 92.1] 263F / 187 M 28.8 ± 1.2 [25, 30] 0: 425; 0.5: 25

Values are presented as Means ± S.D. [range]. M: male, F: female.
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augmentation strategy is applied during the validation/test

stage, and the input image is only center cropped to

ensure the repeatability of each test. For each subject,

soft voting is used to generate the subject-level decision

(Raschka, 2015). First, SoftMax normalization is carried

out on the output of all slices from the same patient to

obtain the predicted probability p. Second, the number of

correct predictions for the j-th slice of all subjects on the

validation set is divided by all the number of correct predic-

tions for 129 slices in order to obtain the weight of the j-th

slice wj. Finally, the subject-level decision is made based

on the following formula:

ŷ ¼ arg maxi
X129
j¼1

wjpij ð2Þ

where ŷ is the class of a subject that is finally predicted

and i 2 0; 1f g contains all the possible classes. For the

AD classification task, the subject will be predicted as

AD (CN) if ŷ=i = 1(0). For MCI conversion prediction

task, the subject will be predicted as pMCI (sMCI) if

ŷ=i = 1(0). The weight wj reflects the importance of

each slice and wj calculated on the validation set will be

retained and used when evaluating on the test set (Wen

et al., 2020).

For the visual explanation stage, the gradient weights

aij
kc for the predicted class c and the feature map Ak is

firstly calculated using the following formula:

aij
kc ¼

@2Yc

ð@Ak
ij
Þ2

2 @2Yc

ð@Ak
ij
Þ2
þPa

P
bA

k
ab

@3Yc

ð@Ak
ij
Þ3

� � ð3Þ

where Yc
is the predicted class score, and Ak is the k-th

feature map of the last convolutional layer. ði; jÞ and ða; bÞ
are the position of the feature mapAk. Then, the gradient of

Yc
with respect to the position ði; jÞ of the feature map Ak

is calculated. Then, the weights wc
k is calculated as:

wc
k ¼

X
i

X
j

aij
kc � relu

@Yc

@Ak
ij

 !
ð4Þ
where relu function is used to get positive gradients.

Finally, the visually explainable heatmap is generated by

combining the weights wc
k and all K feature maps:

Lc
ij ¼ relu

X
k

wc
k � Ak

ij

 !
ð5Þ
Convolutional Neural Network (CNN) models

To systemically evaluate different CNN models, five CNN

structures from classic VGG series (Simonyan and

Zisserman, 2014) to the latest EfficientNet series

(Mingxing and Quoc, 2019) are adopted in this research

and their detailed information is list in Table3. For all the

models, the last fully connected (FC) layer is replaced

with a new FC layer with 2 output nodes.

Compared with the conventional convolution, the

depth-wise separable convolution used in EfficientNet

(Mingxing and Quoc, 2019) can reduce the number of

parameters and reduce the issue of overfitting. The main

building block used in EfficientNet named mobile inverted

bottleneck (Sandler et al., 2018; Tan et al., 2019) is

shown in Fig. 2.

Data augmentation strategy

Inspired by RA, we propose a novel automated data

augmentation strategy called Two-stage Random

RandAugment (TRRA). TRRA consists of 23 available

transformations and all available transformations and

corresponding range of magnitude are listed in Table 4

(7 newly added transformations compared with

RandAugment are bolded). The 23 transformations are

further divided into two categories of color½ � and shape½ �.
The magnitude M for all the transformations is an

integer randomly sampled between the preset two

values. TRRA contains three interpretable integer

hyperparameters Ncolor; Nshape and P. Ncolor shapeð Þ is used

to control the number of transformations that are

randomly selected from the color (shape) category and

sequentially applied to the training image. The

probability parameter P is used to control whether the

selected transformation should be executed or not so



Fig. 1. The flowchart of the proposed deep learning approach.
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that each transformation has the probability of 1� P to

remain the input image unchanged.

When performing data augmentation, TRRA first

selects Ncolor transformations in the color category and

apply them to the image according to the preset

magnitude M. Each transformation has the probability of

1� P not to be superimposed on the input image. Then,

TRRA select Nshape transformations in the shape

category and apply them to the image according to the

preset magnitude M. Each transformation has the

probability of 1� P not to be superimposed on the input

image. The workflow of TRRA when Ncolor and

Nshape are both equal to 1 is shown in Fig. 3. The input

image is processed by TRRA to generate an augmented

image.

The rationale of TRRA design lies on the following

three aspects. First, we think that adding 7 kinds of

transformations and setting M randomly sampling

between two values can further increase the diversity

and quantity of training data. Second, we believe that

color attributes related transformations and shape

attributes related transformations contribute differently to

the classification performance. In RA, each operation is

randomly selected from all the transformations without

differentiating categories. Therefore, it is likely that most

of the operations are selected from the category with

relatively small contributions in the case of N > 1. So,

we use two hyperparameters Ncolor and Nshape to

explicitly specify the number of transformations selected

from the two categories. Finally, we believe that

superimposing too many transformations on the input
image will destroy its inherent characteristics despite the

increased diversity of training data by data

augmentation. The probability parameter P and

Ncolor shapeð Þ can limit the data augmentation process to a

suitable range. So, we introduce third hyperparameter P

to control the probability of execution of each operation.

The following ablation experiments are designed to

verify the contribution of each improvement of TRRA to

classification performance.

(1) To investigate the contribution of 7 newly added

transformations: We expand the search space of

RA by adding the 7 kinds of transformations so we

can get RandAugment-23 (RA-23). RA-23 uses a

fixed magnitude M as RA.

(2) To investigate the contribution of a random M: We

change the magnitude M of RA-23 from a fixed

value to an integer randomly sampled between

5; X½ � X 2 10; 30½ �ð Þ to get Random-

RandAugment-23 (RRA-23).

(3) To investigate the contribution of dividing all trans-

formations into two categories of ½color� and

½shape�, we set the probability parameter P in TRRA

to 1, and then compare TRRA with RRA-23.

(4) To investigate the contribution of the probability

parameter P, we compare the performance of

TRRA under different probability parameter P:

For RA, RA-23 and RRA-23, we perform a grid search

to get their optimal performance. Specifically,

hyperparameter N is sampled from 1 to 8 in a step size



Table 3. Detailed information of CNNs with different structures and different parameters

Model Params (M) FLOPs (B) Model Params (M) FLOPs (B) Model Params (M) FLOPs (B)

VGG-11 132.9 7.6 SE-ResNet-50 28.1 3.9 EfficientNet-B1 7.8 0.7

VGG-13 133.1 11.3 SE-ResNet-101 49.3 7.6 EfficientNet-B2 9.1 1.0

VGG-16 138.4 15.5 SE-ResNet-152 66.8 11.4 EfficientNet-B3 12.2 1.8

VGG-19 143.7 19.7 SENet-154 115.1 20.8 EfficientNet-B4 19.3 4.2

ResNet-18 11.7 1.8 DenseNet-121 8.0 2.9 EfficientNet-B5 30.4 9.9

ResNet-34 21.8 3.7 DenseNet-169 14.2 3.4 EfficientNet-B6 43.0 19

ResNet-50 25.6 4.1 DenseNet-201 20.0 4.4 EfficientNet-B7 66.4 37

ResNet-101 44.6 7.9 DenseNet-161 28.7 7.8

ResNet-152 60.2 11.6 EfficientNet-B0 5.3 0.39

Fig. 2. Schematic diagram of mobile inverted bottleneck used in EfficientNet.
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of 1 for each strategy. HyperparameterM is sampled from

5 to 30 in a step size of 5 for RA and RA-23. For RRA-23,

M is an integer value randomly sampled between ½5;X�,
and X is sampled from 10 to 30 in a step size of 5.

Evaluation metrics

The following commonly used metrics are chosen to

evaluate the classification performance for AD diagnosis

(Lian et al., 2020): accuracy, sensitivity, specificity, and

area under the receiver operating characteristic curve

(AUC), where accuracy is used as the main evaluation

metric.

Implementation

The performances of the proposed approach are

evaluated using two binary tasks of AD classification

(AD vs. CN) and MCI conversion prediction (sMCI vs.

pMCI). The AD classification task is used as a baseline

for evaluating the performance of different models and

data augmentation strategies, and the best model is

used for the MCI conversion prediction task.

To avoid data leakage, we adopt a previously reported

method (Wen et al., 2020) to split the ADNI dataset and

carefully check the results. Specifically, the ADNI dataset

is split into the training/validation/test sets at the subject-

level. The training and the validation sets are used for the

selection of the model capacity of the five structures and

the grid search of the hyperparameters of four data aug-

mentation strategies. The test set only tests the best-

performing model of each structure and the best hyperpa-

rameter combination of each data augmentation strategy.

We ensure that age and sex distributions between train-
ing, validation and test sets are not significantly different.

To avoid the influence caused by a single split, we carry

out a total of three splits following the same ratio of train-

ing/validation/test sets (6:2:2) as Backstrom et al

(Backstrom et al., 2018). All experiments are performed

using these three splits so that the mean and standard

deviation of the metrics can be obtained.

All the training and the testing tasks are performed on

2 NVIDIA GeForce GTX 2080Ti graphics cards using

Pytorch. To prevent overfitting, we adopt an early

stopping strategy: when the validation accuracy doesn’t

improve for a continuous 20 epochs, the training

process will stop, otherwise, the training will continue to

the end of the predefined periods. The selected model

is the one which obtain the highest validation accuracy

during training. Batch size for model training in this

study is 128, but it is reduced for some of the large

models to match the memory capacity of the graphic

cards.

RESULTS

Comparison study of different CNN models

In this part of experiments, we first compare different CNN

models on ADNI validation set to determine the best-

performing model of each structure, and then test them

on ADNI test set. The detailed experimental results of

different CNN models on ADNI validation set can be

found in Appendix A.

The AD classification performance on ADNI test set of

CNN models in different structures is presented in

Table 5. ResNet-18 is also selected for comparing with

the results in the literature (Valliani and Soni, 2017;



Table 4. List of all transformations can be selected during the search using TRRA

Operation Name Description Range of magnitude

Auto Contrast Maximize (normalize) image contrast. –

Equalize Equalize the image histogram. –

Invert Invert (negate) the image. –

Posterize Reduce the number of bits for each color channel. [0, 4]

Solarize Invert all pixel values above a threshold. [0, 256]

Solarize Add Add a value to the image and do solarize. [0, 100]

color½ � Color Adjust image color balance. [0.1, 1.9]

Contrast Adjust image contrast. [0.1, 1.9]

Brightness Adjust image brightness. [0.1, 1.9]

Sharpness Adjust image sharpness. [0.1, 1.9]

Random noise Add a noise randomly sampled from a uniform distribution. [0, 0.4]

Gaussian noise Add a noise randomly sampled from the Gaussian distribution. [0, 0.4]

Gaussian blur Gaussian blur filter. [0, 2.0]

Horizontal flip Flip the image Horizontally (left to right). –

Vertical flip Flip the image vertically (top to bottom). –

Rotate Rotate the image according to magnitude. [0, 30]

Shear X Shear the image along the horizontal axis. [0, 0.3]

shape½ � Shear Y Shear the image along the vertical axis. [0, 0.3]

Cutout Set a random square patch with a side length of magnitude, pixels inside turn gray. [0, 40]

Translate X Move the image along the horizontal axis. [0, 100]

Translate Y Move the image along the vertical axis. [0, 100]

Scale Scale the image horizontally and vertically with equal magnitude degrees. [0.9, 1.4]

Scale XY Scale the image horizontally and vertically with different magnitude degrees. [0.9, 1.4]
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Wen et al., 2020). As the data in Table 5 show: (1) Accu-

racy of ResNet-18 without applying data augmentation is

0.774. This is very similar to Wen et al. (0.760) (Wen

et al., 2020) and Valliani et al. (0.788) (Valliani and

Soni, 2017), which indicates no data leakage in our eval-

uation. (2) The models of different CNN structures in

Table 5 are all in the moderate capacity rather than the

maximum capacity, which indicates that the models with

moderate capacity instead of maximum capacity achieve

the best performance. (3) The classification performance

of each model applying TRRA show similar significant

improvement. The general improvement of more than

10% in them indicate that the performance of the model

trained with the proposed data augmentation strategy is

better than that of the model trained with unenhanced

data in AD classification task. 4) EfficientNet-B1 and

DenseNet-169 both achieve the highest accuracy

(0.932) on the ADNI test set. Combining the above obser-

vations and data in Appendix A, we can see that more

advanced model structures can achieve better perfor-

mance, and models in similar structure with moderate

capacity rather than the largest one can achieve better

performance. Considering that EfficientNet-B1 has the

highest accuracy on both ADNI validation set and ADNI

test set, it is used in the following experiments.
Comparison study of different data augmentation
strategies

In this part of experiments, we first perform a grid search

on ADNI validation set to determine the optimal

hyperparameter combination of each data augmentation

strategy, and then test them on ADNI test set. The

detailed experimental results of EfficientNet-B1 with
different data augmentation strategies on ADNI

validation set can be found in Appendix B.

The AD classification performance on ADNI test set of

each data augmentation strategy is presented in Fig. 4.

Observations from Fig. 4 show that: (1) RA-23 performs

better than RA, which indicates that adding 7 kinds of

transformations in the search space helps to improve

classification performance. (2) RRA-23 performs better

than RA-23, which indicates that compared with the

fixed magnitude, a magnitude randomly sampled

between two values helps to improve classification

performance.

As shown in Fig. 4, RRA-23 helps to get the best

accuracy of 0.917 on ADNI test set when the

hyperparameters N is 7 and M is randomly sampled

from [5, 30]. So, we set the sum of Ncolor and Nshape as

7, and M randomly sample between [5, 30] in searching

the optimal hyperparameters for TRRA. The detailed

experimental results of EfficientNet-B1 with TRRA under

different hyperparameters on ADNI validation set refer

to Appendix C. From the results we observe that

randomly selecting five transformations from the ½color�
category and randomly selecting two transformations

from the ½shape� category achieve the best

performance, which indicates that ½color� category

contributes more to classification performance than

½shape� category.
The AD classification performance on ADNI test set of

TRRA is presented in Fig. 5. Observations from Fig. 4 and

Fig. 5 show that: (1) TRRA performs better than RRA-23.

The accuracy of TRRA is 0.930 when P is equal to 1 and

is further improved compared with 0.917 achieved by

RRA-23, which indicates dividing all transformations into

two categories of ½color� and ½shape� is better for



Fig. 3. Workflow of TRRA when Ncolor and Nshape are both equal to 1. The input image is processed by TRRA to generate an augmented image.

Table 5. AD classification performance on ADNI test set of best-performing model of each CNN structure

Model Performance with TRRA Performance without data augmentation

Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

VGG-13 0.912

± 0.009

0.904

± 0.026

0.920

± 0.043

0.962

± 0.009

0.789

± 0.018

0.788

± 0.062

0.791

± 0.024

0.872

± 0.022

ResNet-18 0.912

± 0.004

0.874

± 0.007

0.950

± 0.007

0.957

± 0.008

0.774

± 0.025

0.753

± 0.014

0.796

± 0.037

0.853

± 0.030

ResNet-50 0.920

± 0.014

0.904

± 0.031

0.935

± 0.019

0.961

± 0.011

0.784

± 0.014

0.727

± 0.025

0.841

± 0.051

0.865

± 0.027

SE-Res

Net-101

0.922

± 0.015

0.889

± 0.019

0.955

± 0.012

0.960

± 0.009

0.794

± 0.014

0.722

± 0.038

0.866

± 0.064

0.875

± 0.029

Dense

Net-169

0.932

± 0.006

0.904

± 0.014

0.960

± 0.019

0.961

± 0.009

0.800

± 0.018

0.778

± 0.040

0.821

± 0.074

0.869

± 0.026

Efficient

Net-B1

0.932

± 0.006

0.924

± 0.000

0.940

± 0.012

0.961

± 0.012

0.777

± 0.019

0.692

± 0.038

0.861

± 0.070

0.870

± 0.027

Values are presented as Means ± S.D.

Fig. 4. AD classification performance on ADNI test set of the of RA, RA-23, and RRA-23 in optimal hyperparameters. Black dots superimposed on

the bar are data points, and numbers above error bar are mean values.

F. Zhang et al. / Neuroscience 491 (2022) 200–214 207
classification performance. (2) The accuracy and AUC of

P is 0.9 are improved by 0.2% and 0.3% compared that

when P is 1, which indicates that P can help improve

classification performance.
Classification performance on MCI conversion
prediction task

Fig. 6 shows the performance ofMCI conversion prediction

task using different pre-training methods and data



Fig. 5. AD classification performance on ADNI test set of TRRA. Black dots superimposed on the bar are data points, and numbers above error bar

are mean values.

Fig. 6. The classification performance on MCI conversion prediction task. Black dots superimposed on the bar are data points, and numbers above

error bar are mean values.
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augmentation strategies. We first train ImageNet pre-

trained EfficientNet-B1 on ADNI training set of MCI

conversion prediction task without using data

augmentation and achieve accuracy of 0.700 on test set.

Then, we use the EfficientNet-B1 model performing best

on AD classification task, and fine-tune it without data

augmentation on the ADNI training set of MCI conversion

prediction task, and accuracy on ADNI test set achieves

0.751. Compared with the ImageNet pre-trained model,

using AD classification task for pre-training improves the

accuracy of the MCI conversion prediction task by 5.1%.

This proves the effectiveness of using AD classification

task for pre-training. Finally, we use TRRA to perform

data augmentation during the training process on MCI

conversion prediction task, accuracy on ADNI test set is

further improved to 0.829, which is increased by 7.8% in

the comparison with no data augmentation. This

indicates that the performance of the model trained with

the proposed data augmentation strategy is better than

that of the model trained with unenhanced data in MCI

conversion prediction task.
Classification performance on AIBL dataset

AIBL dataset is used to further evaluate the generalization

of our proposed approach. Specifically, we choose the

EfficientNet-B1 models performing best on ADNI dataset

(accuracy is 0.932 ± 0.006 on ADNI test set) and take

the AIBL dataset containing 77 AD subjects and 450 CN

subjects for testing. Accuracy on AIBL dataset is

0.920 ± 0.006. Noticeably, we do not further fine-tune
the model on AIBL dataset, and use all the data as a

test set, which is a more difficult choice. To the best of

our knowledge, only Wen et al. (Wen et al., 2020) test

the ADNI trained model on the AIBL dataset, and our per-

formance is better than theirs. The results verify that our

approach generalizes well not only on the dataset from

the same research, but also on the dataset from a similar

study. Table 6 presents the details experimental results.

Visually explainable heatmaps

Grad-CAM++ has been previously introduced to

generate visually explainable heatmaps helping to

highlight the brain regions related with predicted target.

The visually explainable heatmaps generated from

different CNN models are presented in Fig. 7. The

regions highlighted on the heatmaps are slightly

different due to different network structures. Overall, five

models pay more attention to dilation of the lateral

ventricle and cortical atrophy.

The dilation of the lateral ventricle and cortical atrophy

are the macroscopic features of neuropathological

alterations in AD brain (Dickerson et al., 2009; Serrano-

Pozo et al., 2011). The models comprehensively consider

these regions to make the final subject-level diagnosis,

which brings good classification performance.

Comparison with other methods

In this part, we provide a performance comparison table

to further compare with most recent and state-of-the-art

methods reported in the literature. Table 7 summarizes



Table 6. AD vs. CN classification performance on AIBL dataset

Approach Accuracy Sensitivity Specificity AUC

Our 0.920 ± 0.006 0.818 ± 0.021 0.937 ± 0.004 0.939 ± 0.003

(Wen et al., 2020) 0.896 ± 0.011 0.771 ± 0.051 0.918 ± 0.020 -

Values are presented as Means ± S.D.

Fig. 7. The visual explanation results of different CNN models on AD classification task. The highlighted regions on heatmaps are of higher

correlation with the predicted class, and the boundary of the most important red area is drawn on the original image for easy observation. The

numbers on the top indicate the slice positions.
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Table 7. A comparative table of methodologies on both AD vs. CN task and pMCI vs. sMCI task using structural MRI data from the ADNI dataset

Study AD vs. CN pMCI vs. sMCI Approach

Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

Aderghal et al., 2018 0.90 0.94 0.86 - 3D ROI-based

Backstrom et al., 2018 0.90 - 3D subject-level

Cheng et al., 2017 0.87 0.86 0.86 0.92 - 3D patch-level

Danni and Liu, 2017 0.86 0.84 0.90 0.91 - 3D subject-level

Li et al., 2017 0.88 0.91 0.84 0.93 - 3D subject-level

Fan et al., 2018 0.90 0.88 0.91 0.92 - 3D patch-level

Lian et al., 2020 0.90 0.82 0.97 0.95 0.81 0.53 0.85 0.78 3D patch-level

Liu et al., 2017 0.91 0.88 0.94 0.96 0.78 0.42 0.82 0.78 3D patch-level

Liu et al., 2018 0.91 0.87 0.93 0.96 - 3D patch-level

Shmulev and Belyaev, 2018 - 0.62 0.75 0.54 0.70 3D subject-level

Valliani and Soni, 2017 0.81 - 2D slice-level

Spasov et al., 2019 - 0.72 0.63 0.81 0.79 3D subject-level

Liu et al., 2020 0.89 0.87 0.91 0.93 - 3D ROI-based

Kang et al., 2021 0.90 - 2D slice-level

Wen et al., 2020 0.89 0.87 0.90 0.74 0.80 0.68 3D ROI-based

Our method 0.93 0.92 0.94 0.96 0.83 0.90 0.76 0.87 2D slice-level
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the methods using sMRI data from the ADNI dataset for

AD diagnosis (no data leakage in all methods). As the

data indicates, we rank first in accuracy and AUC on

both classification tasks. The performance of the

proposed 2D single model approach on the two

classification tasks both outperforms the existing state-

of-the-art methods including those using multi-model

and 3D CNN.
DISCUSSION

As introduced previously, despite the existing research is

encouraging, deep learning based diagnostic methods for

AD and its prodromal period MCI still have some

limitations. In this research, we propose a novel end-to-

end deep learning approach for the automated

diagnosis of AD. The proposed approach outperforms

the state-of-the-art approaches, including those using

multi-model and 3D CNN methods.

For the AD diagnosis, our approach achieves the

accuracy of 0.93, 0.83 for AD classification, MCI

conversion prediction on the ADNI dataset respectively,

and achieves an accuracy of 0.92 for AD classification

on the AIBL dataset. For the first time, we

systematically assessed CNN models with different

structures and capacities for AD diagnosis. The results

in Table 5 and Table A.1 indicate that more advanced

model structures like EfficientNet and DenseNet can

achieve better performance, and models in similar

structure with moderate capacity rather than the largest

one can achieve better performance.

Limited by lack of large-scale sMRI dataset, it is not

easy to train a model of good classification performance

for AD diagnosis. To alleviate this problem, we propose

TRRA which is more suitable for AD diagnosis task than

RA. The results of the ablation experiments in Fig. 4

and Fig. 5 presents the contribution of each improved

elements of TRRA to classification performance. In

addition, the experimental results in Fig. 6 also proves

that pre-training on AD classification task can improve
the classification performance of the MCI conversion

prediction task.

Unbiased evaluation of performance is an essential

task of deep learning, and the test set should not be

used for hyperparameter selection. We therefore choose

a rigorous evaluation strategy: Training and validation

sets are used for the selection of the model capacity of

the five structures and the grid search of the

hyperparameters of four data augmentation strategies,

and the test set is only adopted for evaluation of the

final classifier.

Meanwhile, we introduce Grad-CAM++ to

understand how the model makes the classification

decision. The heatmaps in Fig. 7 show that our

approach pays more attention to the lateral ventricle and

some regions of cortex, which have been proved to be

affected by AD.

Our approach greatly improves the classification

performance of 2D CNN for AD diagnosis and the

increases transparency of the model. The systematic

evaluation of various CNN models provides a reference

for subsequent studies. The proposed data

augmentation strategy can greatly improve the

diagnostic performance by alleviating the overfitting

problem caused by the limited data in medical datasets,

and it is also flexible to expend in other imaging

modalities and medical datasets. Considering the

potential scarcity of data in the medical field, we only

use less invasive and cheaper sMRI data that can be

obtained in non-tertiary medical center and medium

hospitals, which can make our method applicable to a

wider clinical environment.

In summary, we propose a novel end-to-end deep

learning approach for automated diagnosis of AD from

sMRI data. First, CNN models of different structures and

capacities are evaluated systemically, and the most

suitable model is adopted for AD diagnosis. Then, a

data augmentation strategy called TRRA able to

alleviate overfitting is proposed to improve classification

performance. Meanwhile, to understand how the model

makes decisions and increase transparency of our
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approach, Grad-CAM++ is introduced to generate

visually explainable heatmaps. The effectiveness of our

proposed approach has been extensively evaluated on

two publicly accessible datasets. The experimental

results indicate that our approach outperforms the state-

of-the-art approaches, including those using multi-model

and three-dimensional (3D) CNN methods. The

resultant heatmaps from our approach also highlight the

lateral ventricle and some regions of cortex, which have

been proved to be affected by AD.
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APPENDIX A. CLASSIFICATION
PERFORMANCE OF DIFFERENT CNN MODELS

Table A.1 shows AD classification accuracy of different

CNN models on ADNI validation set. We observe that

regardless of whether TRRA is implemented during the

training process, accuracy of models in similar structure

increases to the maximum value and then decreases as

the model capacity increases. This indicates that the

models with moderate capacity instead of maximum

capacity can achieve the best performance.

APPENDIX B. CLASSIFICATION
PERFORMANCE OF DIFFERENT DATA

AUGMENTATION STRATEGIES

Table B.1 shows AD classification accuracy of

EfficientNet-B1 with different data augmentation

strategies on ADNI validation set. We can observe that

accuracy first increases to the maximum value and then

decreases as the value of N increases for all data

augmentation strategies. The decrease in accuracy is

most likely because too many transformations are

superimposed on the input image, which l leads to an

inherent characteristics gap between the augmented

image and the original image.
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Table B.1. AD classification accuracy of EfficientNet-B1 with different data augmentation strategies on ADNI validation set

Method M N

1 2 3 4 5 6 7 8

RA 5 0.882

± 0.026

0.895

± 0.032

0.892

± 0.023

0.892

± 0.025

0.900

± 0.025

0.890

± 0.015

0.902

± 0.021

0.900

± 0.023

10 0.867

± 0.032

0.895

± 0.027

0.892

± 0.019

0.887

± 0.027

0.897

± 0.030

0.897

± 0.026

0.900

± 0.023

0.900

± 0.023

15 0.872

± 0.028

0.885

± 0.029

0.895

± 0.021

0.895

± 0.027

0.900

± 0.028

0.895

± 0.021

0.897

± 0.030

0.900

± 0.028

20 0.875

± 0.026

0.892

± 0.023

0.892

± 0.023

0.892

± 0.023

0.897

± 0.030

0.895

± 0.027

0.895

± 0.022

0.900

± 0.028

25 0.877

± 0.034

0.890

± 0.002

0.888

± 0.026

0.900

± 0.023

0.897

± 0.030

0.902

± 0.021

0.895

± 0.022

0.900

± 0.023

30 0.867

± 0.034

0.885

± 0.029

0.892

± 0.023

0.892

± 0.023

0.895

± 0.032

0.890

± 0.025

0.890

± 0.020

0.892

± 0.023

RA-23 5 0.880

± 0.032

0.882

± 0.026

0.887

± 0.021

0.890

± 0.025

0.897

± 0.025

0.902

± 0.021

0.895

± 0.021

0.902

± 0.021

10 0.875

± 0.040

0.890

± 0.022

0.892

± 0.028

0.897

± 0.025

0.902

± 0.028

0.902

± 0.022

0.905

± 0.020

0.902

± 0.021

15 0.884

± 0.032

0.880

± 0.022

0.882

± 0.013

0.887

± 0.021

0.900

± 0.018

0.902

± 0.022

0.902

± 0.021

0.902

± 0.022

20 0.872

± 0.022

0.877

± 0.023

0.897

± 0.031

0.895

± 0.021

0.900

± 0.013

0.905

± 0.015

0.902

± 0.012

0.902

± 0.012

25 0.872

± 0.032

0.882

± 0.025

0.892

± 0.023

0.900

± 0.018

0.902

± 0.012

0.902

± 0.016

0.895

± 0.006

0.900

± 0.015

30 0.877

± 0.033

0.882

± 0.026

0.895

± 0.022

0.880

± 0.018

0.900

± 0.015

0.897

± 0.013

0.900

± 0.009

0.885

± 0.020

RRA-23 [5, 10] 0.872

± 0.022

0.875

± 0.032

0.890

± 0.030

0.895

± 0.027

0.895

± 0.011

0.900

± 0.019

0.902

± 0.012

0.905

± 0.022

[5, 15] 0.870

± 0.025

0.875

± 0.040

0.882

± 0.022

0.885

± 0.012

0.892

± 0.019

0.897

± 0.021

0.897

± 0.020

0.897

± 0.094

[5, 20] 0.872

± 0.021

0.889

± 0.022

0.895

± 0.032

0.887

± 0.021

0.897

± 0.020

0.892

± 0.015

0.902

± 0.016

0.900

± 0.094

[5, 25] 0.865

± 0.030

0.882

± 0.020

0.882

± 0.020

0.887

± 0.021

0.897

± 0.020

0.897

± 0.021

0.895

± 0.021

0.900

± 0.007

[5, 30] 0.872

± 0.021

0.880

± 0.016

0.880

± 0.021

0.887

± 0.021

0.897

± 0.020

0.895

± 0.012

0.907

± 0.013

0.900

± 0.023

Values are presented as Means

± S.D.

Table C.1. AD classification accuracy on ADNI validation set of TRRA

Ncolor Nshape P

0.1 0.3 0.5 0.7 0.9 1

1 6 0.870 ± 0.031 0.882 ± 0.037 0.872 ± 0.022 0.885 ± 0.025 0.882 ± 0.015 0.885 ± 0.023

2 5 0.862 ± 0.034 0.880 ± 0.028 0.892 ± 0.029 0.888 ± 0.028 0.887 ± 0.022 0.900 ± 0.029

3 4 0.880 ± 0.031 0.887 ± 0.028 0.892 ± 0.023 0.902 ± 0.021 0.905 ± 0.020 0.897 ± 0.009

4 3 0.880 ± 0.034 0.890 ± 0.025 0.902 ± 0.022 0.900 ± 0.018 0.910 ± 0.018 0.912 ± 0.009

5 2 0.852 ± 0.023 0.890 ± 0.026 0.902 ± 0.016 0.912 ± 0.022 0.915 ± 0.018 0.915 ± 0.018

6 1 0.870 ± 0.020 0.900 ± 0.022 0.902 ± 0.016 0.900 ± 0.009 0.910 ± 0.018 0.910 ± 0.022

Values are presented as Means ± S.D.

214 F. Zhang et al. / Neuroscience 491 (2022) 200–214
APPENDIX C. CLASSIFICATION
PERFORMANCE OF TRRA

Table C.1 shows AD classification accuracy of

EfficientNet-B1 with TRRA under different

hyperparameters on ADNI validation set. From the

results we observe that randomly selecting five
transformations from the ½color� category and randomly

selecting two transformations from the ½shape� category
achieve the best performance, which indicates that

½color� category contributes more to classification

performance than ½shape� category.
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(Available online 7 April 2022)


	A Single Model Deep Learning Approach for Alzheimer’s �Disease Diagnosis
	Introduction
	Experimental procedures
	Participants and data preprocessing
	Overview of the proposed deep learning approach
	Convolutional Neural Network (CNN) models
	Data augmentation strategy
	Evaluation metrics
	Implementation

	Results
	Comparison study of different CNN models
	Comparison study of different data augmentation strategies
	Classification performance on MCI conversion prediction task
	Classification performance on AIBL dataset
	Visually explainable heatmaps
	Comparison with other methods

	Discussion
	Declaration of interest
	CRediT authorship contribution statement

	Acknowledgements
	References
	Appendix A Classification performance of different CNN models
	Appendix B Classification performance of different data augmentation strategies
	Appendix C Classification performance of TRRA


